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Preface

The first edition of this book appeared in 1993, and it could be assumed, wrongly, that
its time has passed as 24 years have now elapsed. It is true that all the original authors
apart from myself have retired but, in the intervening years the text has been regularly
updated and we have now reached the fifth edition. The words of my colleague and
predecessor as editor, Professor Glyn James, still ring true. Here is an excerpt from his
preface to the fourth edition (2011):

Throughout the course of history, engineering and mathematics have developed in
parallel. All branches of engineering depend on mathematics for their description and
there has been a steady flow of ideas and problems from engineering that has stimu-
lated and sometimes initiated branches of mathematics. Thus, it is vital that engineer-
ing students receive a thorough grounding in mathematics, with the treatment related
to their interests and problems. As with the previous editions, this has been the moti-
vation for the production of this latest edition – a companion text to the fifth edition
of Modern Engineering Mathematics, this being designed to provide a first-level core
studies course in mathematics for undergraduate programmes in all engineering dis-
ciplines. Building on the foundations laid in the companion text, this book gives an
extensive treatment of some of the more advanced areas of mathematics that have
applications in various fields of engineering, particularly as tools for computer-based
system modelling, analysis and design. Feedback, from users of the previous edi-
tions, on subject content has been highly positive indicating that it is sufficiently
broad to provide the necessary second-level, or optional, studies for most engineering
programmes, where in each case a selection of the material may be made. Whilst
designed primarily for use by engineering students, it is believed that the book is also
suitable for use by students of applied mathematics and the physical sciences.

Although the pace of the book is at a somewhat more advanced level than the com-
panion text, the philosophy of learning by doing is retained with continuing emphasis
on the development of students’ ability to use mathematics with understanding to
solve engineering problems. Recognizing the increasing importance of mathematical
modelling in engineering practice, many of the worked examples and exercises incor-
porate mathematical models that are designed both to provide relevance and to rein-
force the role of mathematics in various branches of engineering. In addition, each
chapter contains specific sections on engineering applications, and these form an
ideal framework for individual, or group, study assignments, thereby helping to rein-
force the skills of mathematical modelling, which are seen as essential if engineers
are to tackle the increasingly complex systems they are being called upon to analyse
and design. The importance of numerical methods in problem solving is also recog-
nized, and its treatment is integrated with the analytical work throughout the book.



xx PREFACE

The position of software use is an important aspect of engineering education. The deci-
sion has been taken to use mainly MATLAB but also MAPLE. Students are encouraged
to make intelligent use of software and, where appropriate, codes are included, but there
is a health warning. The pace of technology shows little signs of lessening, and so in
the space of six years, the likely time lapse before a new edition of this text, it is prob-
able that software will continue to be updated, probably annually. There is therefore a
real risk that much coding though correct and working at the time of publication could
be broken by these updates. Therefore, in this edition the decision has been made not
to over-emphasise specific code but to direct students to the companion website or to
general principles instead. The software packages, particularly MAPLE, have become
easier to use without the need for programming skills. Much is menu driven these days.
Here’s more from Glyn on the subject that is still true:

Much of the feedback from users relates to the role and use of software packages,
particularly symbolic algebra packages. Without making it an essential requirement
the authors have attempted to highlight throughout the text situations where the user
could make effective use of software. This also applies to exercises and, indeed, a
limited number have been introduced for which the use of such a package is essential.
Whilst any appropriate piece of software can be used, the authors recommend the use
of MATLAB and/or MAPLE. In this edition reference to the use of these two
packages is made throughout the text, with commands or codes introduced and
illustrated. When indicated, students are strongly recommended to use these
packages to check their solutions to exercises. This is not only to help develop
proficiency in their use, but also to enable students to appreciate the necessity of
having a sound knowledge of the underpinning mathematics if such packages are to
be used effectively. Throughout the book two icons are used:

• An open screen  indicates that the use of a software package would be useful
(e.g. for checking solutions) but not essential.

• A closed screen  indicates that the use of a software package is essential or
highly desirable.

Specific changes in this fifth edition are an improvement in many of the diagrams, tak-
ing advantage of present day software, and modernization of the examples and lan-
guage. Also, the chapter on Applied Probability and Statistics has been significantly
modernized by interfacing the presentation with the very powerful software package R.
Simply search for ‘R Software’ and it is a free download. I have been much aided in
getting this edition ready for publication by my hardworking colleagues Matthew, Tim
and Julian who have joined the editorial team.
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2 MATRIX ANALYSIS

Introduction
In this chapter we turn our attention again to matrices, first considered in Chapter 5
of Modern Engineering Mathematics (MEM), and their applications in engineering.
At the outset of the chapter we review the basic results of matrix algebra and briefly
introduce vector spaces.

As the reader will be aware, matrices are arrays of real or complex numbers, and
have a special, but not exclusive, relationship with systems of linear equations. Such
systems occur quite naturally in the process of numerical solution of ordinary differ-
ential equations used to model everyday engineering processes. In Chapter 9 we shall
see that they also occur in numerical methods for the solution of partial differential
equations, for example those modelling the flow of a fluid or the transfer of heat.
Systems of linear first-order differential equations with constant coefficients are at the
core of the state-space representation of linear system models. Identification, analy-
sis and indeed design of such systems can conveniently be performed in the state-
space representation, with this form assuming a particular importance in the case of
multivariable systems.

In all these areas it is convenient to use a matrix representation for the systems under
consideration, since this allows the system model to be manipulated following the rules
of matrix algebra. A particularly valuable type of manipulation is simplification in some
sense. Such a simplification process is an example of a system transformation, carried
out by the process of matrix multiplication. At the heart of many transformations are
the eigenvalues and eigenvectors of a square matrix. In addition to providing the means
by which simplifying transformations can be deduced, system eigenvalues provide vital
information on system stability, fundamental frequencies, speed of decay and long-term
system behaviour. For this reason, we devote a substantial amount of space to the
process of their calculation, both by hand and by numerical means when necessary. Our
treatment of numerical methods is intended to be purely indicative rather than complete,
because a comprehensive matrix algebra computational tool kit, such as MATLAB, is
now part of the essential armoury of all serious users of mathematics.

In addition to developing the use of matrix algebra techniques, we also demonstrate
the techniques and applications of matrix analysis, focusing on the state-space system model
widely used in control and systems engineering. Here we encounter the idea of a function
of a matrix, in particular the matrix exponential, and we see again the role of the
eigenvalues in its calculation. This edition also includes a section on singular value
decomposition and the pseudo inverse, together with a brief section on Lyapunov stability
of linear systems using quadratic forms.

Review of matrix algebra
This section contains a summary of the definitions and properties associated with matrices
and determinants. A full account can be found in chapters of MEM or elsewhere. It is
assumed that readers, prior to embarking on this chapter, have a fairly thorough under-
standing of the material summarized in this section.

1.1

1.2
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1.2.1 Definitions

(a) An array of real numbers

is called an m × n matrix with m rows and n columns. The aij is referred to as the
(ij)th element and denotes the element in the ith row and jth column. If m = n
then A is called a square matrix of order n. If the matrix has one column or one
row then it is called a column vector or a row vector respectively.

(b) In a square matrix A of order n the diagonal containing the elements a11, a22, . . . ,
ann is called the principal or leading diagonal. The sum of the elements in this
diagonal is called the trace of A, that is

(c) A diagonal matrix is a square matrix that has its only non-zero elements along the
leading diagonal. A special case of a diagonal matrix is the unit or identity matrix I
for which a11 = a22 = . . . = ann = 1.

(d) A zero or null matrix 0 is a matrix with every element zero.

(e) The transposed matrix AT is the matrix A with rows and columns interchanged,
its i, jth element being aji.

(f ) A square matrix A is called a symmetric matrix if AT = A. It is called skew
symmetric if AT = −A.

1.2.2 Basic operations on matrices

In what follows the matrices A, B and C are assumed to have the i, jth elements aij, bij

and cij respectively.

Equality

The matrices A and B are equal, that is A = B, if they are of the same order m × n
and

aij = bij, 1 < i < m, 1 < j < n

Multiplication by a scalar

If λ is a scalar then the matrix λA has elements λaij.

A

a11 a12 a13 . . . a1n  

a21 a22 a23 . . . a2n  

am1 am2 am3 . . . amn  

=

trace A aii

i=1

n

=
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Addition

We can only add an m × n matrix A to another m × n matrix B and the elements of the
sum A + B are

aij + bij, 1 < i < m; 1 < j < n

Properties of addition

(i) commutative law: A + B = B + A

(ii) associative law: (A + B ) + C = A + (B + C )

(iii) distributive law: λ(A + B ) = λA + λB, λ scalar

Matrix multiplication

If A is an m × p matrix and B a p × n matrix then we define the product C = AB as the
m × n matrix with elements

, i = 1, 2, . . . , m; j = 1, 2, . . . , n

Properties of multiplication

(i) The commutative law is not satisfied in general; that is, in general AB ≠ BA.
Order does matter and we distinguish between AB and BA by the terminology:
pre-multiplication of B by A to form AB and post-multiplication of B by A to
form BA.

(ii) Associative law: A(BC ) = (AB )C

(iii) If λ is a scalar then

(λA)B = A(λB ) = λAB

(iv) Distributive law over addition:

(A + B )C = AC + BC A(B + C ) = AB + AC

Note the importance of maintaining order of multiplication as in property (i).

(v) If A is an m × n matrix and if Im and In are the unit matrices of order m and n
respectively then

ImA = AIn = A

Properties of the transpose

If AT is the transposed matrix of A then

(i) (A + B )T = AT + BT

(ii) (AT)T = A

(iii) (AB )T = BTAT

cij = aikbkj

k=1

p





1.2  RE VIE W OF MATRIX  ALG EBRA 5

1.2.3 Determinants

The determinant of a square n × n matrix A is denoted by det A or | A |.
If we take a determinant of a matrix and delete row i and column j then the deter-

minant remaining is called the minor Mij of the (ij)th element. In general we can take
any row i (or column) and evaluate an n × n determinant | A | as

A minor multiplied by the appropriate sign is called the cofactor Aij of the (ij)th
element so Aij = (−1)i+j Mij and thus

Some useful properties

(i) | AT | = | A |

(ii) | AB | = | A | | B |

(iii) A square matrix A is said to be non-singular if | A | ≠ 0 and singular if | A | = 0.

1.2.4 Adjoint and inverse matrices

Adjoint matrix

The adjoint of a square matrix A is the transpose of the matrix of cofactors, so for a
3 × 3 matrix A

Properties

(i) A (adj A) = | A |I

(ii) | adj A | = | A | n−1, where n is the order of A

(iii) adj (AB ) = (adj B )(adj A)

Inverse matrix

Given a square matrix A if we can construct a square matrix B such that

BA = AB = I

then we call B the inverse of A and write it as A−1.

| A | −1( )i+j aijMij

j=1

n

=

| A | aij Aij

j=1

n

=

adj A
A11 A12 A13

A21 A22 A23

A31 A32 A33

T

=
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Properties

(i) If A is non-singular then |A | ≠ 0 and A−1 = (adj A)/|A |.

(ii) If A is singular then |A | = 0 and A−1 does not exist.

(iii) (AB )−1 = B−1A−1.
 

All the basic matrix operations may be implemented in MATLAB using simple
commands. In MATLAB a matrix is entered as an array, with row elements sepa-
rated by spaces (or commas) and each row of elements separated by a semicolon(;),
or the return key to go to a new line. Thus, for example,

A=[1 2 3; 4 0 5; 7 4 2]

gives

A=
1 2 3
4 0 5
7 4 2

Having specified the two matrices A and B the operations of addition, subtraction
and multiplication are implemented using respectively the commands

C=A+B, C=A-B, C=A*B

The trace of the matrix A is determined by the command trace(A), and its
determinant by det(A).

Multiplication of a matrix A by a scalar is carried out using the command *, while
raising A to a given power is carried out using the command ^ . Thus, for example,
3A2 is determined using the command C=3*A^2.

The transpose of a real matrix A is determined using the apostrophe ’ key; that
is C=A’ (to accommodate complex matrices the command C=A.’ should be used).
The inverse of A is determined by C=inv(A).

For matrices involving algebraic quantities, or when exact arithmetic is desirable
use of the Symbolic Math Toolbox is required; in which matrices must be expressed
in symbolic form using the sym command. The command A=sym(A) generates the
symbolic form of A. For example, for the matrix

the commands

A=[2.1 3.2 0.6; 1.2 0.5 3.3; 5.2 1.1 0];
A=sym(A)

generate

A=
[21/10, 16/5, 3/5]
[6/5, 1/2, 33/10]
[26/5, 11/10, 0]

Symbolic manipulation can also be undertaken in MATLAB using the MuPAD
version of Symbolic Math Toolbox.

A = 
2.1 3.2 0.6
1.2 0.5 3.3
5.2 1.1 0
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1.2.5 Linear equations

In this section we reiterate some definitive statements about the solution of the system
of simultaneous linear equations

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

an1x1 + an2x2 + . . . + annxn = bn

or, in matrix notation,

that is,

Ax = b (1.1)

where A is the matrix of coefficients and x is the vector of unknowns. If b = 0 the
equations are called homogeneous, while if b ≠ 0 they are called nonhomogeneous
(or inhomogeneous). Considering individual cases:

Case (i): If b ≠ 0 and |A | ≠ 0 then we have a unique solution x = A−1b.

Case (ii): If b = 0 and |A | ≠ 0 we have the trivial solution x = 0.

Case (iii): If b ≠ 0 and |A | = 0 then we have two possibilities: either the equations are
inconsistent and we have no solution or we have infinitely many solutions.

Case (iv): If b = 0 and |A | = 0 then we have infinitely many solutions.

Case (iv) is one of the most important, since from it we can deduce the important
result that the homogeneous equation Ax = 0 has a non-trivial solution if and only
if |A | = 0.

Such operations may be performed in Python. Details are not given here, but the
interested reader is directed to, for example, Beginning Python by Lie Hethand
(Springer, 2005). The numPy package should be loaded.

a11 a12 . . . a1n  

a21 a22 . . . a2n  

an1 an2 . . . ann  

 x1 

 x2 

 xn 

 b1 

 b2 

 bn 

=
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1.2.6 Rank of a matrix

We adopt the following constructive definition of the rank, rank A of a matrix A. First,
using elementary row operations, the matrix A is reduced to echelon form

in which all the entries below the line are zero, and the leading element, marked *, in
each row above the line is non-zero. Then the number of non-zero rows in the echelon
form is equal to rank A. These are equivalent definitions.

When considering the solution of (1.1) we saw that provided the determinant of the
matrix A was not zero we could obtain explicit solutions in terms of the inverse matrix. How-
ever, when we looked at cases with zero determinant the results were much less clear. The
idea of the rank of a matrix helps to make these results more precise. Defining the
augmented matrix (A : b) for (1.1) as the matrix A with the column b added to it
then we can state the results of cases (iii) and (iv) of Section 1.2.5 more clearly as
follows: 

Provided that a solution to (1.1) exists it may be determined in MATLAB using the
command x=A\b. For example, the system of simultaneous equations

x + y + z = 6, x + 2y + 3z = 14, x + 4y + 9z = 36

may be written in the matrix form

Entering A and b and using the command x = A\b provides the answer x = 1, y = 2, z = 3.

1 1 1

1 2 3

1 4 9

A

x

y

z

x

 
=

 

6

14

36

E

If A and (A : b) have different rank then we have no solution to (1.1). If the two
matrices have the same rank then a solution exists, and furthermore the solution
will contain n − rank A free parameters.
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Vector spaces
Vectors and matrices form part of a more extensive formal structure called a vector space.
The theory of vector spaces underpins many approaches to numerical methods and the
approximate solution of many equations that arise in engineering analysis. In this section
we shall, briefly, introduce some basic ideas of vector spaces necessary for later work
in this chapter.

Definition
A real vector space V is a set of objects called vectors together with rules for addition
and multiplication by real numbers. For any three vectors a, b and c in V and any real
numbers α and β the sum a + b and the product α a also belong to V and satisfy the
following axioms:

In MATLAB the rank of the matrix A is generated using the command rank(A).
For example, if

the commands

A=[-1 2 2; 0 0 1; -1 2 0];
rank(A)

generate

ans=2

In MAPLE the command is also rank(A).

A = 
−1 2 2

0 0 1
−1 2 0

1.3

(a) a + b = b + a

(b) a + (b + c) = (a + b) + c

(c) there exists a zero vector 0 such that

a + 0 = a

(d) for each a in V there is an element −a in V such that

a + (−a) = 0

(e) α(a + b) = αa + αb

(f ) (α + β )a = αa + βa

(g) (αβ )a = α (βa)

(h) 1a = a




